
A new graph construction for the optimal Jacobian accumulation

problem

Andrew Lyons

Computation Institute, The University of Chicago

Mathematics and Computer Science Division, Argonne National Laboratory

lyonsam@gmail.com

Abstract

. . .

1 Introduction

. . .

2 The Path Graph

Definition 1 (Path Graph). For a given Linearized Computational Graph (LCG) G = ((X,Y,Z),E) we
define the path graph Gp = (V p, Ep, Cp) as follows:

1. The vertex set V p is equal to the set E of edges in in G (the local partial derivatives cj,i are retained
as labels on the elements of V p).

2. The Edge set Ep is the set of all edges {a ∈ V p, b ∈ V p} such that the corresponding edges a, b ∈ E
lie on a common maximal path in G (a path from some independent vertex x ∈ X to some dependent
vertex y ∈ Y).

3. The clique set Cp = {Cy,x}y∈Y,x∈X comprises entry sets Cy,x defined by

Cy,x = {{v ∈ Gp : v ∈ [x → y]}}[x→y]∈G .

In other words, for every entry F ′
y∈Y,x∈X = cy,x = ∂y

∂x
of the Jacobian matrix F ′ there is a set Cy,x ∈ Cp

whose members correspond to the paths from x to y in G.

Proposition 1. There is a one-to-one correspondence between maximal paths in G and maximal cliques in
Gp.

Proof. (⇒) Let P be the set of all edges along any path [x → y] ∈ G. The corresponding vertices C ⊆ V p in
Gp are pairwise adjacent and thus form a clique. Assume there exists some vertex v ∈ V p such that v /∈ C
and C ⊆ N(v). Then for every ci ∈ C there exists a path Pi in G such that the edges in G corresponding
to both vandci lie on Pi.

We have reached a contradiction. So the assumption is false, thus Because no such v could exist, we may
conclude that every such clique C is maximal in Gp.

(⇐) Let C ⊆ V p be a maximal clique in Gp . . . this implies a maximal path in G . . .
Let Pi = (p1 ∈ X, p2, . . . , p|Pi| ∈ Y)

Observation 1. The graph Gp is a composition of cliques. Could we gain anything by working with the
complement instead?

1

−1 0

1

2

3 45 6

a b

c

d

e fg h

a b

c

d

e

f g

h

(a) (b)

Figure 1: Linearized computational graph G (a), and the corresponding path graph Gp (b) for the lion
example

2.1 Example

Figure 1 depicts the (LCG) lion graph [5] (a) and the corresponding path graph (b).
The clique set Cp = {Cy,x}y∈{3,4,5,6},x∈{−1,0} for this example is

C3,−1 = {{a, d, e}} C4,−1 = {{a, d, f}} C5,−1 = {{a, d, g}} C6,−1 = {{a, d, h}, {a, c}}
C3,0 = {{b, d, e}} C4,0 = {{b, d, f}} C5,0 = {{b, d, g}} C6,0 = {{b, d, h}, {b, c}}

Definition 2 (set membership). The set membership C(v) of a vertex v ∈ vp is defined by

C(v) = {C ∈ C : v ∈ C}
C∈Cp .

Definition 3 (neighbourhood). The open neighbourhood N(v) ⊆ V p of a vertex v ∈ V p is defined by

N(v) = {u ∈ V p : {u, v} ∈ Ep} .

The closed neighbourhood N [v] ⊆ V p of v, is defined by

N [v] = N(a) ∪ {a} .

3 The Edge Contraction Operation

The Jacobian matrix F ′ is peaccumulated by a sequence of edge contraction operations on Gp, each of which
is equivalent to a single fused multiply-add (fma) operation. The result of a complete sequence of edge
contractions is a dual graph Gp = (V p, ∅, Cp) where |V p| = |‖ and every Cy,x ∈ Cp contains a single set C
whose sole member bears the Jacobian entry F ′

y,x.

Rule 1 (edge contraction). The contraction of any edge {a, b} ∈ Ep is defined by the following:

1. Remove {a, b} from Ep.

2. Create a new vertex ab ∈ V p and new edges incident on ab such that N(ab) = N(a) ∩ N(b).

3. For all C ∈ (C(a) ∩ C(b)), set C = (C \ {a, b}) ∪ {ab}.

4. Remove all edges that connect a vertex in {a, b} to a vertex in (N(a) ∩ N(b)). If this process leaves
either a or b isolated, then remove it from V p.

2

5. (clique merge rule) If there exists some entry set C ∈ Cp such that there exist sets C, C′ ∈ C such that
C \ C′ = {ab} and C′ \ C = {ab′} for some ab′ ∈ V p, then create a new vertex (ab′ + ab) ∈ V p and
merge cliques for all C ∈ Cp as follows. For all C ∈ (C(ab) ∩ C):

(a) Identify a set C′ ∈ C such that C \ C′ = {ab} and C′ \ C = {ab′} for some ab′ ∈ V p.

(b) Create new edges connecting ab′ + ab to every member of the set C ∩ C′.

(c) Create a new set C+ = (C ∩ C′) ∪ {ab′ + ab} and make it a member of C .

(d) Remove sets C and C′ from C .

(e) Remove vertices ab′ and ab from V p.

Lemma 1. Let {a, b} be any edge whose contraction calls for one or more clique merge operations. Then
the following are true:

(i) There is no C in any C ∈ Cp such that ab, ab′ ∈ C (C(ab) ∩ C(ab′) = ∅).
(ii) There is a unique vertex ab′ ∈ V p such that ab′ is eligible to be merged with ab as above.

(iii) For any set C which contains ab, there is at most one other set C′ that it is eligible to
be merged with.

(iv) Let C ∈ Cp be any entry set. Then either every set C ∈ (C ∩ C(ab)) is merged with
a corresponding set C′ ∈ C \ C(ab) or none of them is.
(There is a one-to-one correspondence between such sets C and C′ in C .)

(v) Vertices ab and ab′ are isolated by the contraction of {a, b}.
(vi) The merging of two cliques cannot result in other cliques becoming mergable.

Proposition 2. Under edge contractions with or without merges, the following properties are preserved:

• The set {C ∈ C }C∈Cp is exactly the set of maximal cliques in Gp.

• Gp is a composition of cliques.

Proposition 3. Clique merge operations should be performed as soon as possible

Proposition 4 (termination). Any sequence of edge contraction operations that can be applied to a path
graph Gp is finite.

Proof. To begin with, we have that |V p|, |Ep|, and |{C ∈ C }C∈Cp | (The number of maximal cliques in Gp)
are all finite. Contraction of any edge {a, b} with no subsequent clique merging entails the following:

• No change in the number of maximal cliques.

• |N(a) ∩ N(b)| new edges are added (all incident on ab).

• 2|N(a) ∩ N(b)| edges are removed (two from each node adjacent to both a and b.

Thus we have |(Ep)′| < |Ep|.
Suppose merge operation(s) are involved:

• Decrease in number of maximal cliques.

• |N(a) ∩ N(b)| new edges are added (to ab).

• . . .

Because the edge contraction process is complete whenever there are no edges in the graph, and each
step reduces the number of edges in the graph . . .

Lemma 2 (structural correctness). Edge contraction operations preserve cliques as maximal, distinct

Lemma 3 (numerical correctness). . . .

3

a b

c

d

e

f g

h

a b

c + dh

d

e

f g

(a) (b)

Figure 2: Gp before (a), and after (b) the contraction of edge {d, h}

3.1 Example

Consider the contraction of edge {d, h} in the lion example. We have N(d) ∩ N(h) = {a, b}, so the new
vertex dh is made to be adjacent to both a and b. All edges incident on h are removed, which leaves h
isolated, thus h is removed. We now have that C6,−1 = {{a, dh}, {a, c}} and C6,0 = {{b, dh}, {b, c}}, and so
vertices c and dh must be merged (because {a, dh} \ {dh} = {a, c} \ {c} and {b, dh} \ {dh} = {b, c} \ {c}).
This leaves us with C6,−1 = {{b, c + dh}} and C6,0 = {{b, c + dh}}.

3.2 Some Observations on Edge Contraction Operations

Observation 2 (fill). Consider the contraction of some edge {a, b} ∈ Ep. The isolation of a or b constitutes
one fill-out each, and the generation of ab is a single fill-in. No fill-in occurs if the newly-generated ab is
merged with some ab′. Thus, the possibilities include:

• 0 fill-out and 0 fill-in (neither a nor b isolated, and merge).

• 0 fill-out and 1 fill-in (neither a nor b isolated, no merge).

• 1 fill-out and 0 fill-in (either a or b isolated, and merge).

• 1 fill-out and 1 fill-in (either a or b isolated, no merge).

• 2 fill-out and 0 fill-in (both a and b isolated, and merge).

• 2 fill-out and 1 fill-in (both a and b isolated, no merge).

At worst, a single new memory slot is required. At best, two slots are made free.

Observation 3. Consider the contraction of some edge {a, b} ∈ Ep.

• If {a, b} is a module in Gp (meaning N [a] = N [b]), then we have C(a) = C(b), and both a and b are
isolated by the contraction.

• If N [a] (N [b], then C(a) (C(b), and only vertex a becomes isolated by the contraction (and vice
versa).

• Neither a nor b is isolated if and only if N [a] * N [b] and N [a] * N [b].

Observation 4. In order to provide for commutivity, vertices could be labelled with multiplication and
addition sets rather than sequences

Observation 5. Could the path graph be represented as a hypergraph where the cliques are the edges?

4

4 Exploiting Algebraic Dependencies

4.1 Simple vertex merges

Because the path graph doesn’t have any order to it, and all the information is stored in the cliques, we can
perform any graph transformation that preserves the clique information.

Observation 6. When we merge two vertices, we can no longer guarantee that the clique sets C are exactly
the maximal cliques in Gp.

For “simple vertex merges“ we require that no clique C in any entry set C carry more than one vertex
with the same label (the cliques are sets, anyway)

Define an equivalence relation p on the vertices in V p.

Rule 2 (simple vertex merges). For every equivalence class A ⊆ V p of vertices identified as equal to each
other, merge the elements a of A to form a single vertex according to the following:

1. N(a+) =
⋂

a∈A N(a)

2.

4.2 Example

Consider the vector function y = F(x) defined by y1 = x2 ∗ sin(
√

x1), y2 = x2 ∗ sin(
√

x1). We take F to be
implemented as code that implies the following linearized code list:

c1,−1 =; v1 =
√

v−1

c2,1 = cos(v1); v2 = sin(v1)
c3,1 = -sin(v1); v3 = cos(v1)
c4,0 = v2; c4,2 = v0; v4 = v2 ∗ v0

c5,0 = v3; c4,3 = v0; v5 = v3 ∗ v0

The assignments v−1 = x1, v0 = x2, y1 = v4, and y2 = v5 are implied.
G, the LCG corresponding to F , is shown in Figure 3(a). Figure ??(b) shows the path graph Gp

that corresponds to G. The clique set Cp = {Cy,x}y∈{4,5},x∈{−1,0} for Gp is C4,−1 = {{a, b, d1}}, C4,0 =
{{a, c, d2}}, C5,−1 = {{e}}, C5,0 = {{f}}.

−1

0

√
1

2 sin cos 3

4 ∗ ∗ 5

a

b c

d1 d2e f

a

b

c

d1

d2

e

f

a

b

c

d

e

f
ad

b

c

e

f

(a) (b) (c) (d)

Figure 3: Linearized computational graph G (a), and the corresponding path graph Gp (b) for example 2

Now assume the compiler is capable of recognizing the following. The successors of vertex −2 ∈ G,
namely vertices 1 and 2, both correspond to multiplications in the assignment sequence. Vertex 1 has only
one other predecessor, −1, so we have a1 = c1,−1 = v−2. By applying the same considerations to vertex 2,

5

we may observe that a2 = c2,0 = v−2. Thus we may conclude that vertices a1 and a2 in the path graph Gp

are both members of the same equivalence class A ⊆ V p. Such equivalence relationships between vertices in
Gp can be determined in polynomial time.

If the compiler is capable of performing the aforementioned analysis, then we may merge vertices a1

and a2 into a new vertex a according to Rule 2 before any edge contraction operations are performed.
The resulting path graph Gp and is shown in Figure 4(a) and has clique set Cp ∈ Gp equal to {C5,−2 =
{{c1, e, b2}}, C5,−1 = {{f}}, C5,0 = {{a, e, b2}}, C6,−2 = {{b1, d, c2}}, C6,−1 = {{a, d, c2}}, C6,0 = {{g}}}.

a

b1

b2

c1

c2

d

e

f

g

a

b

c1

c2

d
e

fg

a b

c

d e

f

g

(a) (b) (c)

Figure 4: The path graph Gp corresponding to F after vertices a1 and a2 have been merged (a), after vertices
b1 and b2 have been merged (b), and after vertices c1 and c2 have been merged (c)

The assumed compiler analysis will also tell us that we may merge both vertices b1,b2 together and
c1,c2 together to create new vertices b and c, respectively. The results of these merges are shown in Figure
4. The graph in Figure 4(c) has clique set {C5,−2 = {{c, e, b}}, C5,−1 = {{f}}, C5,0 = {{a, e, b}}, C6,−2 =
{{b, d, c}}, C6,−1 = {{a, d, c}}, C6,0 = {{g}}}.

Note that the graphs in Figures 4(a) and 4(b) both have ten edges. The same is true of the original path
graph in Figure ??(b). However, the graph in Figure 4(c) shows that the merging of c1 and c2 reduces the
number of edges in Gp by one. In general, merging two vertices a1 and a2 reduces the number of edges in
Gp by the number of neighbors they have in common, or |N(a1) ∩ N(a2)|.

The edge contraction sequence ({

4.3 more on algebraic dependences

Theorem 1 (NP-completeness). Ensemble Computation is equivalent to Jacobian preaccumulation by edge
contractions (after simple vertex merges have been performed for all equivalence classes) on distinct paths
(maximal cliques where |C | = 1 for all C ∈ Cp) where each path comprises distinct vertices.

Proof. The set objects in ensemble computation mean that no edge label can occur twice on the same path.
The cliques are the sets, and edge contraction (note that there are no merges) corresponds to set union.

Observation 7. general edge dependencies (hessians, related partials) could be exploited by a few simple
modifications to the contraction procedure? (it gets messy?) (see handwritten example?)

Observation 8. Any LCG vertex that is multiplied means an edge carries that label. If it is multiplied with
n other variables, then there is an equivalence class of cardinality n that is a subset of Gp.

5 Further thoughts

1. It may be useful to label edges in Ep with the number of cliques they occur in.

2. What are vertex/edge/face elimination in terms of edge contraction? Vertex is contracting an entire
bi-clique, and edge is contracting a bi-clique where one partition has 1 element. . . but not quite. Order
information is LOST in the path graph

6

3. Is there a sub-class of paths graphs that are mappable to LCGs, or dual graphs? how are they
characterized? (composition of bi-cliques rather than cliques?)

4. We also lose information about when edges come into the picture during the evaluation of the code. A
topological sort wont help. Number vertices in Gp by the time their source vertex in G comes active
in the code? but then there’s lots of orderings.

5. What is it about the restrictions on vertex/edge that make them so amenable to linear-algebra opera-
tions (Gaussian elimination, Schur complement, matrix chaining, etc. . .)?

6 Conclusions

Bauer’s formula:
F ′

y,x =
∑

[x→y]∈G

∏

cj,i∈[x→y]

cj,i , (1)

See ([1],[2],[4],[5],[3],[6]).

References

[1] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP–
Completeness. Freeman, San Francisco, 1979.

[2] Andreas Griewank. On automatic differentiation. In Masao Iri and Kunio Tanabe, editors, Mathemat-
ical Programming: Recent Developments and Applications, pages 83–108. Kluwer Academic Publishers,
Dordrecht, 1989.

[3] Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA, 2000.

[4] Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by the Markowitz rule.
In Andreas Griewank and George F. Corliss, editors, Automatic Differentiation of Algorithms: Theory,
Implementation, and Application, pages 126–135. SIAM, Philadelphia, PA, 1991.

[5] U. Naumann. Efficient Calculation of Jacobian Matrices by Optimized Application of the Chain Rule to
Computational Graphs. PhD thesis, Technical University of Dresden, December 1999.

[6] Uwe Naumann. Optimal accumulation of Jacobian matrices by elimination methods on the dual compu-
tational graph. Math. Prog., 99(3):399–421, 2004.

7

